Physical Restraint & Capture Myopathy

Christine Fiorello, DVM, PhD, Dipl. ACZM

Physical vs. Chemical Restraint

PHYSICAL

- Avoid risks of anesthesia
- Avoid risks of darting
- Less expensive
- Less time-consuming

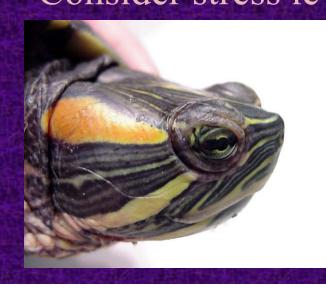
CHEMICAL

- Less stressful for animal
- Allows thorough exam, procedures, sample collection
- Lower risk of injury to staff
- Provides analgesia

Basic Principles

- Same for chemical and physical techniques
- Minimize stimuli
 - Reduce noise, cover face
 - Prepare far from cage
- Monitor the animal
 - Respiration
 - Sweating
 - Agitation/mentation
- Always be prepared to abort

Physical Restraint


- Must be safe for animals and personnel
- Size of animal may not correlate with challenge!
 Tiny animals can be remarkably difficult to restrain
 - Tiny animals can bite!

Physical Restraint

Know the animal's weapons
Be aware how the animal can injure him/herself
Know the animal's primary senses
Consider stress level

Physical Restraint

- Keep in mind psychological needs of species
 - Prey species may experience greater stress
 - Consider the role of conspecifics
 - May or may not choose to separate from group/family members
 - Highly social or pair-bonded animals

Options

- Manual restraint
 Towels, gloves
 - Ropes, chains
- Squeeze cage
 - Many sizes & shapes
- Chute
- Nets
- Boards
- Tubes

Hand

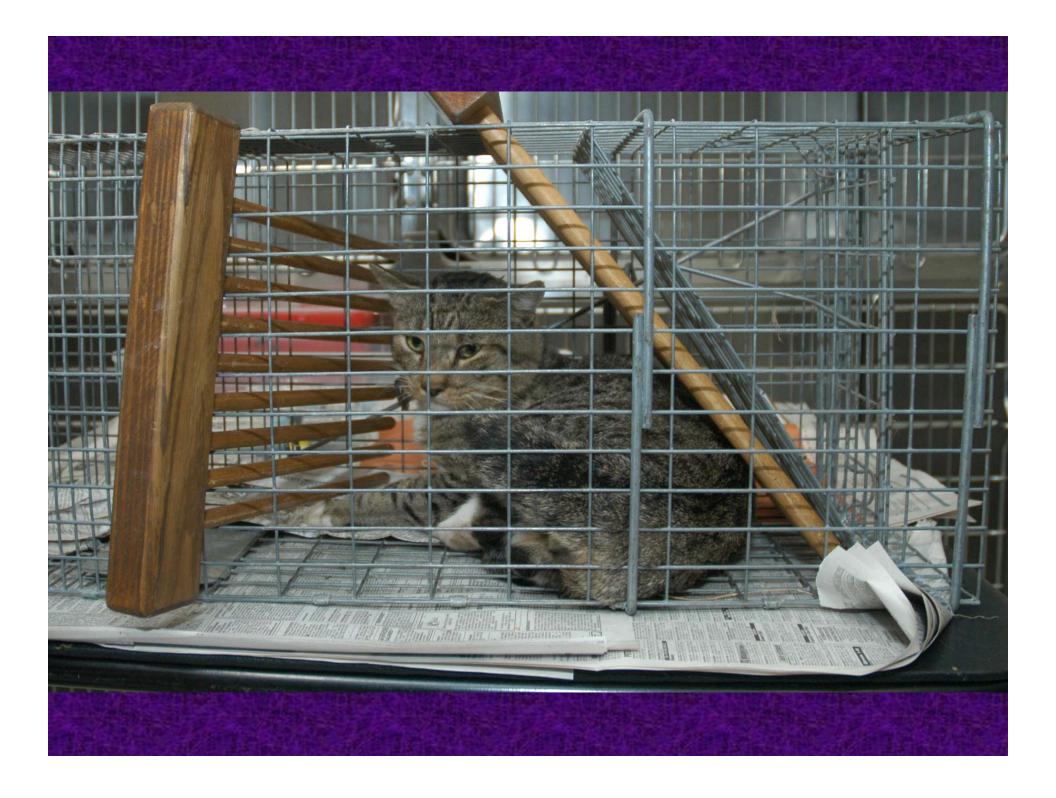
Manual Restraint

May be one or many people Keep procedure as short as possible (< 5 min) Keep stimulation to a minimum • - Blindfolds/Hoods - Minimal talking Use gloves/towels judiciously - May decrease handler's sensitivity, leading to injury

Manual Restraint

- Ropes
- Chains
- Elephant guide
 "bull hook"
 - "ankus"
- Gloves
 - Primates
 - kevlar
 - Raptor

Squeeze cages


- Good for primates, carnivore
 - Use carefully
 - Watch all body parts (tails, feet) while squeezing
 - Squeeze should be rapid
 - Avoid allowing time for animal to bite at bars

Squeeze cages

Many modifications • Squeeze box - Good for large lizards Can use branches • Less likelihood of tooth fracture

Avoid tooth fractures!

Nets

Many sizes & configurations

Potential for injury
Staff and animal
Useful for quick procedures
injections

•

Chutes

• Many types on market for large animals - Hydraulic – Manual - Dropped floors • Animals can be seriously and/or permanently injured in chutes

Chutes

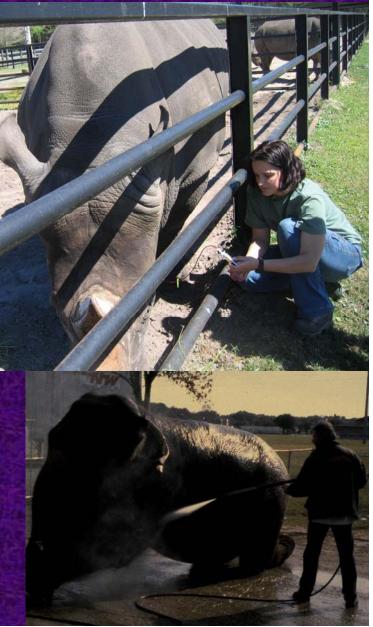
- Still involves some manual restraint
 - Blindfolds
 - Minimal noise
 - Vigilance
- Useful for short procedures
 - Vaccinations, injections
 - TB tests
 - Blood draws
 - Ear, wound cleaning

Boards/Shields

Same concept as squeeze cage

Plastic, wooden or metal
Used to herd an animal

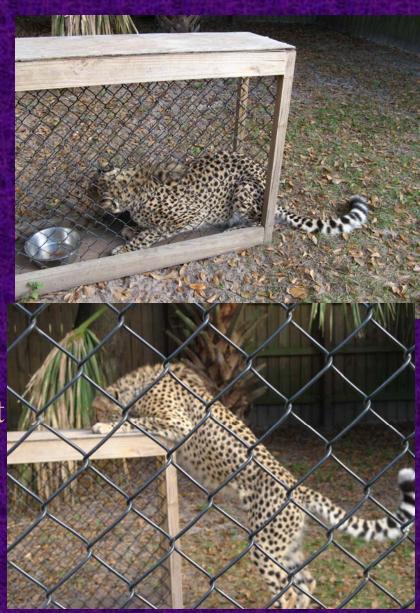
Often used with sea lions, seals, suids, small hoofstock
Crocodilians often strapped to a board


Tubes

Clear plastic

- Venomous snakes
- Awake procedures
- Induction of anesthesia

- Operant conditioning
- Voluntary cooperation
 - Animal can choose to leave at any time
- Suitable for nearly all species
- Removes stress and anesthesia as confounding factors in lab samples


Advantages

- Less stress for animal & staff
- Fewer logistic challenges
- Usually safe for animals and people
- Promotes bond between animals & keepers
 - Training is form of enrichment
 - No "bad memories" for animal

Disadvantages

- Takes time and dedication from staff
- Relies on cooperation from animal
 - Response may be different with different trainers
 - Animal may be inconsistent
 - May not be possible in an emergency situation

Appropriate uses

- Initial inject of immobilizing agents
- Blood, urine collection
- Targeted exams
 - Feet, oral cavity, body condition
- Chronic medication administration
 - Insulin, oral drugs, nebulization
- Monitoring body weight
- Ultrasound
 - Pregnancy diagnosis/monitoring
 - Chronic illnesses

Protected vs. Free Contact

- Elephant management
 - Protected contact: always a barrier between keeper and elephant
 - Circuses all use free contact
 - $-\sim 50\%$ AZA-accredited zoos
- Controversial
 - Safer for keepers
 - but still risks!
 - No data on elephant safety or well-being

Stress

What is it?

- Adaptive response to anything that hinders the body's ability to compensate and maintain homeostasis
- Physiologic & hormonal adjustments

• Is it bad?

- It is necessary for survival
- Chronic, severe stress

Physiologic stress

- All animals have limited resources
- In the wild and in captivity
 - Territory
 - Food
 - Dens/havens
 - Mates
- Stress is part of lifeTry to minimize stressors

Sources of stress

Physiologic

•

- Lactation, extreme age, pain
- Malnutrition, disease, injury
- Unrelenting noise
- Noxious stimuli (heat, cold)
- Chemical
 - Oxygen depletion, anesthesia
- Intense exercise
- Hemorrhage, dehydration

Sources of stress

EPIC FA

Psychologic

- Social
- Fear
- Anxiety
- Frustration
- Perception
- Lack of food, shelter
 Inability to express full range of behaviors

Psychologic stress

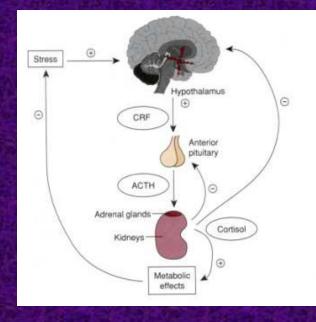
Perception of limited resources • - Behavioral intimidation Ample food available but lowranking animal can't feed Chronic harassment by group members Constant attempts by males to breed ۲ Predators housed nearby • Exhibits - Cheetahs

Enclosures

Size

•

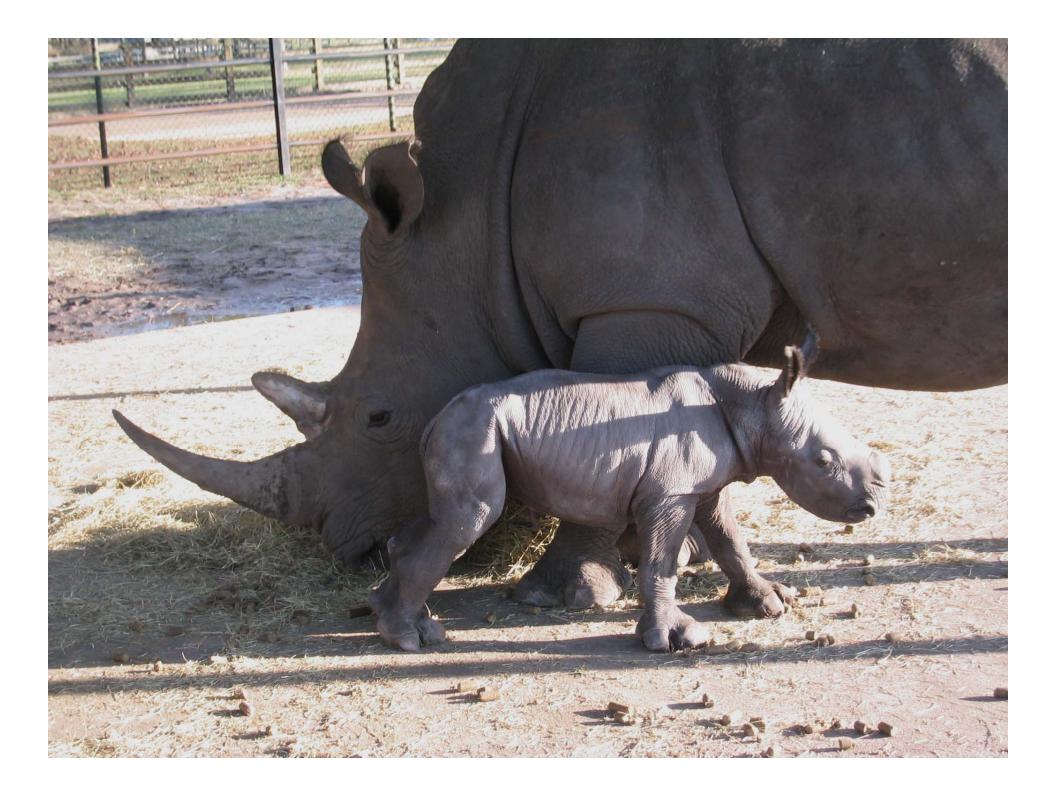
- Typical polar bear exhibit is about *one-millionth* of normal home range size
- Proximity to public, traffic, noise
- Proximity to other species
- Position
 - Birds prefer to be high up



Sympthatic nervous system

- Restraint causes fear and often pain
- Activation of hypothalamicpituitary-adrenal axis
 - Massive release of catecholamines

 - Vasodilation in muscles
 - Vasoconstriction in organs
 - Behavior- fight or flight


Mitigate stress from restraint

- Minimize duration
- Supplement oxygen
- Minimize pain/discomfort
- Monitor carefully, abort if necessary
- Cool an overheated animal

Capture Myopathy

- Iatrogenic
 - Pursuit
 - Capture, restraint
 - Struggling against restraint
- Intense muscle activity
- Occurs in mammals, birds, and potentially other species
- Many synonyms
 - White muscle disease
 - Exertional rhabdomyolysis

Susceptibility

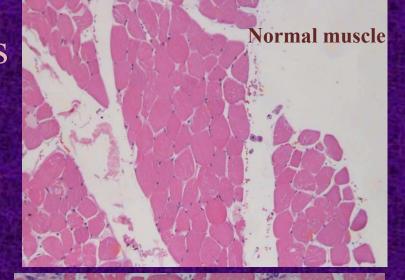
Ungulates

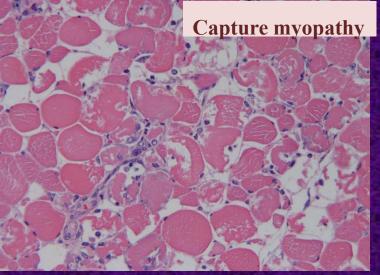
- Eland, kudu, roan, hartebeest
- White-tailed deer, pronghorn
- Birds

•

- Cranes
- Wading birds
- Storks
- Probably most vertebrates are susceptible to some degree

Predisposing factors

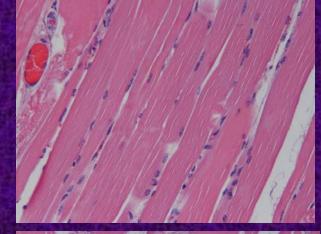

High ambient temperature Underlying vitamin E or selenium deficiency • Extremes of age Pregnancy Opioids – Carfentanil, etorphine, thiafentanyl

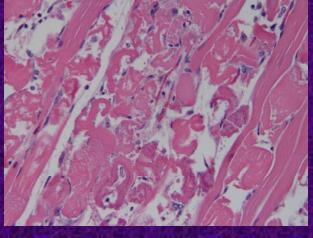


Pathogenesis

• Altered blood flow to tissues • Hyperthermia & metabolic acidosis) lactate • Edema) ischemia Electrolyte imbalances • Exhaustion of ATP • Eventually get necrosis, hypotension, pulmonary congestion, cardiac failure

Clinical syndromes

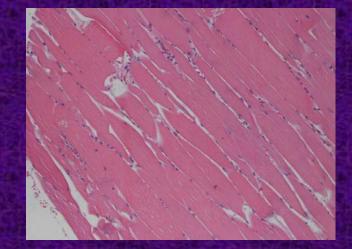

Capture shock • – Acute death Ataxic myoglobinuric Most common – Often fatal Ruptured muscle • - Few survive long-term Delayed-peracuted • – Usually fatal

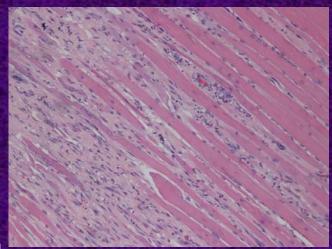


Capture shock syndrome

 Occurs during or shortly after immobilization Clinical signs - Depression, hyperthermia − ↑ HR, RR, weak pulses • Clin Path – **↑** CK, AST, LDH Lesions ۲ - Severe hepatic, intestinal congestion – Pulmonary edema

Ataxic myoglobinuric syndrome


- Occurs hours to days after captureClinical signs
 - Ataxia, myoglobinuria, torticollis
 - Animals with mild signs may recover
- Clin path
 - ↑CK, AST, LDH, BUN
 - Lesions
 - Swollen, dark kidneys
 - Tubular necrosis
 - Pale, soft, dry limb muscles



Ruptured muscle syndrome

- Occurs 24-48 hours after capture
 - Initially appear normal
- Clinical signs
 - Drop in hindquarters
 - Hyperflexion of hock
- Clin path
 - ↑↑ CK, AST, LDH
 - Lesions
 - Massive hemorrhage in rear limbs
 - Severe muscle necrosis

Delayed-peracute syndrome

- Animals kept in captivity after capture
 - When stressed again, acute death ensues
 - Lesions

•

- Pale foci in skeletal muscles
- Necrosis of hind limb muscles
- Cause?
 - Hyperkalemia and acidosis from ongoing rhabdomyolysis
 - Surge of epinephrine followed by ventricular fibrillation

Treatment

Usually unrewarding • Oxygen, fluids to treat acidosis IV Sodium bicarbonate Aggressive cooling Analgesia (NSAIDS, opioids) • Corticosteroids to stabilize membranes Vitamin E/selenium Muscle relaxants

Prevention

Way better than treatment! Minimize exertion during capture Avoid captures on hot days • Vitamin E/selenium Provide oxygen supplementation • Tranquilizers where indicated Flunixin meglumine Check and correct electrolyte imbalances

