AVIAN RESTRAINT & ANESTHESIA

Christine Fiorello, DVM, PhD, Dipl. ACZM

OBJECTIVE

Learn to safely restrain, anesthetize, and provide appropriate analgesia for a bird

Physical Restraint

Manual (bare-handed)

&Gloves

❖Towel

♦ Net

Hoods

- Common in falconry
 - -Diurnal raptors
- Other species
 - -Ostriches
 - (not emus or rheas)
 - -Waterfowl
 - -Cranes

Passerines & Small Psittacines

Raptors

Cover with towel, then control feet

Can use gloves

❖In falconry, birds are

trained to the glove

Pre-anesthetic Preparation

- Dedicated Anesthetist
- Fasting
 - ≤ 2-4 hours
- Draw up ER drugs, reversals
- Analgesic plan
- ❖Be prepared to cancel or abort

Anesthetic morbidity & mortality is directly related to anesthetic duration

TIME=LIFE

Analgesia

- *Poor analgesics:
 - Isoflurane
 - -Sevoflurane
 - -Propofol
 - -Benzodiazepines

BEDEORD

*Midazolam 5 mg/mL (as the hydrochloride)

Analgesic plan

- Dissociative anesthetics
- Local anesthetics
 - -Toxicity overdosage
- Nitrous oxide
 - Underutilized
 - -DECREASED Fi02
 - -Expands gas filled spaces
 - Not air sacs

ANALGESIA

Opioids

- Kappa agonists
 - -Butorphanol (0.5-2.0 mg/kg) reduced MAC
- Mu receptor agonists
 - Poor to no response

ANALGESIA

NSAIDS

- Nephrotoxicity
 - -Species sensitivity
 - -Long-term use

- Flunixin meglumine (0.1-1.0 mg/kg)
- Ketoprofen (1-2 mg/kg bid)
- Meloxicam (0.3 mg/kg sid)
 - -Preferred by many

Induction

- Injectables
 - -Propofol
 - -Ketamine combinations
- Inhalants
 - -Isoflurane
 - -Sevoflurane

Propofol

- Requires vascular access
 - Large birds
- Respiratory depression
- Hypotension
- Short duration
- Poor analgesic

Ketamine Combinations

- **❖IV** or IM
- ❖Analgesia?
- Prolonged recovery
- ❖Poor muscle relaxation

Inhalants

- Rapid control of airway
 - -Mask at high %
 - -No chamber induction
 - -Intubate ASAP
- Turn down gas once induced
 - Efficient respiration
 - Overdosage
- Minimize dead space

Isoflurane

- Low tissue/blood solubility
- Cardiopulmonary depression
 - -Dose-dependent
 - Arrhythmogenicity
- Poor analgesia
 - Premed for painful procedures

Sevoflurane

- Lower solubilities
- Lower potency
 - Higher MAC
- **⇔**Expensive
- Shorter inductions and recoveries
 - Not always an advantage

Ventilatory Support

- Endotracheal tube
- *Air sac cannula
- Ventilator

VENTILATORY SUPPORT

Endotracheal intubation

- Endotracheal tube
 - -Uncuffed tube
 - Catheter for tiny birds
 - Remember ↑↑ in resistance
- Trachea relatively larger than mammals
- Complete tracheal rings

VENTILATORY SUPPORT

Endotracheal Intubation

Intubated bird

- Always disconnect before moving or repositioning bird
- Cause of tracheal strictures not completely understood
- Use extreme care when handling

Airsac Cannulation

VENTILATORY SUPPORT

Non-rebreathing systems

- Lower resistance
- Easy to adjust depth
- High-flow
 - -Rapid heat loss
 - -Wasteful

Ventilation

- ❖IPPV is critical
 - Spontaneous breathing does NOT ensure adequate ventilation
 - -Every 6-10 seconds
 - -Manual or mechanical
- Watch chest excursions

Thermoregulatory support

- Water blankets
- Heat lamps
- ❖Bair hugger
 - -Forced air warmer
 - -Most effective

Fluid Support

Crystalloids

- ½ strength LRS or saline (0.045%) + ½ strength dextrose (2.5%)
- -~ 25% remains in vascular space in 30 min
- 10 ml/kg/hour during surgery

❖Colloids

- Hetastarch
- 10-15 ml/kg IV or IO over 15 minutes

Do not use hypertonic solutions

Vascular access

- Emergency drugs
- Fluid support
- Pros and cons
 - -Delicate veins
 - IO may be preferable
 - Difficult to secure
 - -May take time to get in
 - TIME=LIFE

Intraosseous catheter

Ulna (not pelicans) or tibiotarsus

- ❖Spinal needle, 22 to 18 ga
- Half length of bone
- Lidocaine and/or general anesthesia
- Placement assessment
 - Basilic vein clearance
 - Radiograph
 - No evidence of SQ accumulation

Intraosseous catheter

Syringe pumps

- Accurate
- Small volume infusion
 - -Fluids
 - Drugs
- Use regular syringes
- Can pre-program infusions

MEDFUSION 2010i

Blood transfusion

- Available blood donors
 - -Same species
 - -Same genus
 - -Same order?

Oxyglobin

- Expensive
- Hypertonic
- Hypertension
- Easy to fluid-overload patients

Subcutaneous fluids

- Advantages
 - -Convenient
 - -Easy
- Disadvantages
 - -Slow absorption
 - What would you want in an emergency?
- Do not use hypertonic solutions

Monitoring

- Clear drapes
- Esophageal stethescope
- Temperature probe
- ***ETCO₂** underutilized
- ❖Doppler-ulnar, tibiotarsal a.
- Pulse ox less useful in birds

Anesthetic Depth

- Muscle relaxation
- Response to pain
 - Feather plucking very painful
- Palpebral & corneal response
- Heart & respiration rate
 - Careful-HR may ↓ just before arousal

Doppler flow detection

Ulnar a.

Tibiotarsal a.

ECG

- ❖ Monitor HR
- Dx arrhythmias
- Challenging
 - -Fast rates
 - -Low amplitude
- Use small clips or needles

Respiration

- Watch chest excursions
- Assume hypoventilation
 - Anesthetic depression
 - -Positional
 - -Disease

- CO2 stimulates respiratory drive
 - Use lower RR when recovering birds

Blood gas analysis

- ♦ pH & P_aCO₂ Acid-base status
- Ulnar or metatarsal arteries

Pulse oximetry

- Not valid in birds
- Trends may be useful
 - -Pulse rate
 - –Pulse wave -/= perfusion

End-tidal CO₂ (capnography)

- Very useful tool
- Not perfect
 - Dead-space
 - -Sampling rate
 - -Volume
- Awaits validation

Temperature

- ❖Esophageal = core
- ❖Cloacal -/= core
- Continuous
- Normal bird ≥ 104°F

Recovery

- Wrap bird in towel until able to stand
- Remove perches from cage until bird can perch steadily
- Birds often arrest at or just after
 - extubation
 - -Be prepared

Prolonged recovery?

- Anesthetic overdose
- Hypothermia
- Hypoglycemia
- Hypercapnia
- Hypovolemia

