Physical Restraint & Capture Myopathy

Christine Fiorello, DVM, PhD, Dipl. ACZM
Physical vs. Chemical Restraint

PHYSICAL
- Avoid risks of anesthesia
- Avoid risks of darting
- Less expensive
- Less time-consuming

CHEMICAL
- Less stressful for animal
- Allows thorough exam, procedures, sample collection
- Lower risk of injury to staff
- Provides analgesia
Basic Principles

- Same for chemical and physical techniques
- Minimize stimuli
 - Reduce noise, cover face
 - Prepare far from cage
- Monitor the animal
 - Respiration
 - Sweating
 - Agitation/mentation
- Always be prepared to abort
Physical Restraint

- Must be safe for animals and personnel
- Size of animal may not correlate with challenge!
 - Tiny animals can be remarkably difficult to restrain
 - Tiny animals can bite!
Physical Restraint

- Know the animal’s weapons
- Be aware how the animal can injure him/herself
- Know the animal’s primary senses
- Consider stress level
Physical Restraint

• Keep in mind psychological needs of species
 – Prey species may experience greater stress
 – Consider the role of conspecifics
 • May or may not choose to separate from group/family members
 • Highly social or pair-bonded animals
Options

- Manual restraint
 - Towels, gloves
 - Ropes, chains
- Squeeze cage
 - Many sizes & shapes
- Chute
- Nets
- Boards
- Tubes
Manual Restraint

- May be one or many people
- Keep procedure as short as possible (< 5 min)
- Keep stimulation to a minimum
 - Blindfolds/Hoods
 - Minimal talking
- Use gloves/towels judiciously
 - May decrease handler’s sensitivity, leading to injury
Manual Restraint

- Ropes
- Chains
- Elephant guide
 - “bull hook”
 - “ankus”
- Gloves
 - Primates
 - kevlar
 - Raptor

[Images showing different tools and restraints used in manual restraint]
Squeeze cages

- Good for primates, carnivores
- Use carefully
 - Watch all body parts (tails, feet) while squeezing
 - Squeeze should be rapid
 - Avoid allowing time for animal to bite at bars
Squeeze cages

- Many modifications
- Squeeze box
 - Good for large lizards
- Can use branches
 - Less likelihood of tooth fracture
Avoid tooth fractures!
Nets

• Many sizes & configurations
 • Potential for injury
 – Staff and animal
 • Useful for quick procedures
 – injections
Chutes

- Many types on market for large animals
 - Hydraulic
 - Manual
 - Dropped floors

- Animals can be seriously and/or permanently injured in chutes
Chutes

• Still involves some manual restraint
 – Blindfolds
 – Minimal noise
 – Vigilance

• Useful for short procedures
 – Vaccinations, injections
 – TB tests
 – Blood draws
 – Ear, wound cleaning
Boards/Shields

- Same concept as squeeze cage
 - Plastic, wooden or metal
 - Used to herd an animal
- Often used with sea lions, seals, suids, small hoofstock
- Crocodilians often strapped to a board
Tubes

- Clear plastic
 - Venomous snakes
 - Awake procedures
 - Induction of anesthesia
Behavioral Restraint

- Operant conditioning
- Voluntary cooperation
 - Animal can choose to leave at any time
- Suitable for nearly all species
- Removes stress and anesthesia as confounding factors in lab samples
Behavioral Restraint

• **Advantages**
 – *Less stress* for animal & staff
 – Fewer logistic challenges
 – Usually safe for animals and people
 – Promotes bond between animals & keepers
 • Training is form of enrichment
 • No “bad memories” for animal
Behavioral Restraint

• Disadvantages
 – Takes time and dedication from staff
 – Relies on cooperation from animal
 • Response may be different with different trainers
 • Animal may be inconsistent
 • May not be possible in an emergency situation
Behavioral Restraint

• **Appropriate uses**
 – Initial inject of immobilizing agents
 – Blood, urine collection
 – Targeted exams
 • Feet, oral cavity, body condition
 – Chronic medication administration
 • Insulin, oral drugs, nebulization
 – Monitoring body weight
 – Ultrasound
 • Pregnancy diagnosis/monitoring
 • Chronic illnesses
Protected vs. Free Contact

- Elephant management
 - Protected contact: always a barrier between keeper and elephant
 - Circuses all use free contact
 - ~50% AZA-accredited zoos

- Controversial
 - Safer for keepers
 - but still risks!
 - No data on elephant safety or well-being
Stress

• What is it?
 – Adaptive response to anything that hinders the body’s ability to compensate and maintain homeostasis
 – Physiologic & hormonal adjustments

• Is it bad?
 – It is necessary for survival
 – Chronic, severe stress
Physiologic stress

• All animals have limited resources
• In the wild and in captivity
 – Territory
 – Food
 – Dens/havens
 – Mates
• Stress is part of life
• Try to minimize stressors
Sources of stress

• Physiologic
 – Lactation, extreme age, pain
 – Malnutrition, disease, injury
 – Unrelenting noise
 – Noxious stimuli (heat, cold)
• Chemical
 – Oxygen depletion, anesthesia
 – Intense exercise
 – Hemorrhage, dehydration
Sources of stress

- Psychologic
 - Social
 - Fear
 - Anxiety
 - Frustration
 - Perception
 - Lack of food, shelter
 - Inability to express full range of behaviors
Psychologic stress

- Perception of limited resources
 - Behavioral intimidation
 - Ample food available but low-ranking animal can’t feed
- Chronic harassment by group members
- Constant attempts by males to breed
- Predators housed nearby
- Exhibits
 - Cheetahs
Enclosures

- Size
 - Typical polar bear exhibit is about *one-millionth* of normal home range size
- Proximity to public, traffic, noise
- Proximity to other species
- Position
 - Birds prefer to be high up
Symptomatic nervous system

- Restraint causes fear and often pain
- Activation of hypothalamic-pituitary-adrenal axis
 - Massive release of catecholamines
 - HR, BP, cardiac output, O₂ demand
 - Vasodilation in muscles
 - Vasoconstriction in organs
 - Behavior- fight or flight
Mitigate stress from restraint

- Minimize duration
- Supplement oxygen
- Minimize pain/discomfort
- Monitor carefully, abort if necessary
- Cool an overheated animal
Capture Myopathy

- Iatrogenic
 - Pursuit
 - Capture, restraint
 - Struggling against restraint
- Intense muscle activity
- Occurs in mammals, birds, and potentially other species
- Many synonyms
 - White muscle disease
 - Exertional rhabdomyolysis
Susceptibility

- Ungulates
 - Eland, kudu, roan, hartebeest
 - White-tailed deer, pronghorn
- Birds
 - Cranes
 - Wading birds
 - Storks
- Probably most vertebrates are susceptible to some degree
Predisposing factors

- High ambient temperature
- Underlying vitamin E or selenium deficiency
- Extremes of age
- Pregnancy
- Opioids
 - Carfentanil, etorphine, thiafentanyl
Pathogenesis

• Altered blood flow to tissues
• Hyperthermia & metabolic acidosis → lactate
• Edema → ischemia
• Electrolyte imbalances
• Exhaustion of ATP
• Eventually get necrosis, hypotension, pulmonary congestion, cardiac failure
Clinical syndromes

- **Capture shock**
 - Acute death
- **Ataxic myoglobinuric**
 - Most common
 - Often fatal
- **Ruptured muscle**
 - Few survive long-term
- **Delayed-peracuted**
 - Usually fatal
Capture shock syndrome

- Occurs during or shortly after immobilization
- Clinical signs
 - Depression, hyperthermia
 - ↑ HR, RR, weak pulses
- Clin Path
 - ↑ CK, AST, LDH
- Lesions
 - Severe hepatic, intestinal congestion
 - Pulmonary edema
Ataxic myoglobinuric syndrome

- Occurs hours to days after capture
- Clinical signs
 - Ataxia, myoglobinuria, torticollis
 - Animals with mild signs may recover
- Clin path
 - ↑CK, AST, LDH, BUN
- Lesions
 - Swollen, dark kidneys
 - Tubular necrosis
 - Pale, soft, dry limb muscles
Ruptured muscle syndrome

- Occurs 24-48 hours after capture
 - Initially appear normal
- Clinical signs
 - Drop in hindquarters
 - Hyperflexion of hock
- Clin path
 - ↑↑↑ CK, AST, LDH
- Lesions
 - Massive hemorrhage in rear limbs
 - Severe muscle necrosis
Delayed-peracute syndrome

- Animals kept in captivity after capture
- When stressed again, acute death ensues
- Lesions
 - Pale foci in skeletal muscles
 - Necrosis of hind limb muscles
- Cause?
 - Hyperkalemia and acidosis from ongoing rhabdomyolysis
 - Surge of epinephrine followed by ventricular fibrillation
Treatment

- Usually unrewarding
- Oxygen, fluids to treat acidosis
- IV Sodium bicarbonate
- Aggressive cooling
- Analgesia (NSAIDS, opioids)
- Corticosteroids to stabilize membranes
- Vitamin E/selenium
- Muscle relaxants
Prevention

• Way better than treatment!
• Minimize exertion during capture
• Avoid captures on hot days
• Vitamin E/selenium
• Provide oxygen supplementation
• Tranquilizers where indicated
• Flunixin meglumine
• Check and correct electrolyte imbalances